Abstract

The metal–organic framework MIL-53(Al) is characterized by a distinct reversible structural transition between a narrow pore (NP) and a large pore (LP) state, resulting in expansion or contraction of this three-dimensional porous framework also called breathing. This transition is studied for vanadium-doped MIL-53(Al), induced by temperature (T) using in situ electron paramagnetic resonance (EPR) and X-ray diffraction (XRD) in air and in vacuum. The EPR active VIV═O molecular ions are used as local probes to detect the NP to LP transitions. The EPR spectra of VIV═O embedded in the NP and LP MIL-53(Al) states are clearly distinguishable. The temperature-dependent EPR and XRD data can consistently be interpreted in terms of T-ranges in the experiments where one of the states is predominantly present and a narrow T-range in which the two states coexist. In addition the XRD data indicate that the NP state undergoes a transition to a metastable state characterized by different lattice parameters than the NP st...

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.