Abstract

The multi-electron redox reaction of an organic radical based composite cathode comprised of poly(2,2,6,6- tetramethylpiperidinyloxy-4-yl methacrylate) (PTMA)-Ketjenblack is investigated using an in situ electrochemical-electron spin resonance (ESR) methodology. The experiments allow each electrochemical state to be associated with the chemical state (or environment) of the radical species upon the cell cycling. In situ ESR spectra of the composite cathode demonstrate a two-electron redox reaction of PTMA that is from an aminoxy anion (n-type, at 2.5–2.6 V vs. Li/Li+) via a radical (at 3.2–3.5 V vs. Li/Li+) to an oxoammonium cation (p-type, at 3.7–4.0 V vs. Li/Li+). In particular, an adjustable n-type doping process of PTMA is first observed during the discharging process. Moreover, two different local environments of radical species are found in the PTMA-Ketjenblack composite electrode that includes both concentrated and isolated radicals. These two types of radical species, showing similarities during the redox reaction process while behaving quite different in the non-faradic reaction of ion sorption/desorption on the electrode surface, govern the electrochemical behavior of PTMA based composite electrode.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.