Abstract

AbstractThe previously unknown experimental HfO2–Ta2O5‐temperature phase diagram has been elucidated up to 3000°C using a quadrupole lamp furnace and conical nozzle levitator system equipped with a CO2 laser, in conjunction with synchrotron X‐ray diffraction. These in‐situ techniques allowed the determination of the following: (a) liquidus, solidus, and invariant transformation temperatures as a function of composition from thermal arrest experiments, (b) determination of equilibrium phases through testing of reversibility via in‐situ X‐ray diffraction, and (c) molar volume measurements as a function of temperature for equilibrium phases. From these, an experimental HfO2–Ta2O5‐temperature phase diagram has been constructed which is consistent with the Gibbs Phase Rule.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.