Abstract

Selective area growth (etching) by low-pressure organometallic chemical vapor deposition (LP-OMCVD) is utilized to intentionally modulate the local growth (etch) rate by choosing the pattern of dielectric-masked areas, thereby defining III-V semiconductor structures in situ. This technique is applied to tune the emission wavelength of a GaAs/AlGaAs quantum well structure, and to obtain InP/InGaAs superlattice structures tapered in thickness with growth rate increases as high as 800%, suitable for integrated optics applications. In contrast, selective deposition by organometallic molecular beam epitaxy (OMMBE) does not produce growth rate enhancements, thereby preventing similar in situ definition schemes but allowing to integrate structures with optimized nominal thicknesses.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.