Abstract

The construction of rich phase interfaces to increase active reaction area in hybrid materials is an excellent strategy to improve electrochemical performance. Under this guideline, MIL-101@OX-metal organic framework (MOF) is constructed by the "MOF on MOF" method, then converts to MIL-101@NiFe-layered double hydroxides (LDH) by in situ transformation in alkaline solution. MIL-101@NiFe-LDH shows excellent electrochemical water oxidation performance. It needs only an overpotential of 215 mV to drive 10 mA/cm2 of oxygen evolution reaction (OER), which is less than that of NiFe-LDH, MIL-101. In addition, MIL-101@NiFe-LDH has the smallest Tafel slope (55.1 mV/dec) compared with NiFe-LDH (61.1 mV/dec), MIL-101 (150.8 mV/dec). The excellent water oxidation activity is due to the high phase interfaces derived from high specific surface area of MOF. This work offers an alternative method for making MOF/LDH heterostructures with an optimized phase interfaces and provides new insights for OER.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.