Abstract
Photocatalytic reduction of CO2 to valuable energy materials is necessary for sustainable development. It is a considerable challenge to prepare photocatalysts for CO2 photoreduction with excellent separation capability of carriers by simple way. Herein, the BiOBr/Bi2O2CO3 type-II heterostructure was constructed by in situ conversion at room temperature. Combining the advantages of the 2D/2D layered structure can form a close contact interface and the type-II heterostructure can facilitate the transport of photogenerated charges, the BiOBr/Bi2O2CO3 composite showed significant enhancement in photocatalytic CO2 reduction performance. The most obvious performance enhancement was observed for 2.0-BiOBr/Bi2O2CO3, where CO yield could reach 29.55 μmol·g−1 for 3 h under light irradiation, it is 11 and 4 times higher than Bi2O2CO3 and BiOBr, respectively. And the sample exhibits excellent cycling stability in photocatalytic tests. In situ Fourier Transform Infrared spectroscopy confirmed that the important intermediates of the reaction are *COOH and *CO. The photocatalytic reduction mechanism of CO2 to CO in the BiOBr/Bi2O2CO3 type-II heterostructure was further analyzed. This study provides feasible solutions for selecting photocatalytic materials and designing facile preparation of efficient 2D/2D catalysts for photocatalytic reduction of CO2.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.