Abstract
This paper presents an experimental comparison between the plasma cleaning and the laser cleaning techniques of diagnostic first mirrors (FMs). The re-deposition of contaminants sputtered from a tokamak first wall onto FMs could dramatically decrease their reflectance in an unacceptable way for the proper functioning of plasma diagnostic systems. Therefore, suitable in situ cleaning solutions will be required to recover the FMs reflectance in ITER. Currently, plasma cleaning and laser cleaning are considered the most promising solutions. In this work, a set of ITER-like rhodium mirrors contaminated with materials tailored to reproduce tokamak redeposits is employed to experimentally compare plasma and laser cleaning against different criteria (reflectance recovery, mirror integrity, time requirement). We show that the two techniques present different complementary features that can be exploited for the cleaning of ITER FMs. In particular, plasma cleaning ensures an excellent reflectance recovery in the case of compact contaminants, while laser cleaning is faster, gentler, and more effective in the case of porous contaminant. In addition, we demonstrate the potential benefits of a synergistic solution which combines plasma and laser cleaning to exploit the best features of each technique.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.