Abstract
CeO2/CuO heterojunction composite catalysts were synthesized using a one-step method, achieving the introduction of Ce species on nanoscale copper oxide (CuO) particles during the hydrothermal process. On one hand, this protects the nanostructure of the substrate from damage and prevents the agglomeration of CuO nanoparticles. On the other hand, the bimetallic synergistic effect between Ce and Cu effectively improves the conductivity and catalytic activity of the catalyst, significantly enhancing the selectivity of the catalyst for electrochemical reduction of CO2 to C2H4, while effectively suppressing the competing hydrogen evolution reaction (HER). By regulating the amount of CeO2 introducing, a series of CeO2/CuO composite catalysts were designed. The results showed that the 15% CeO2/CuO catalyst exhibited the best selectivity and catalytic activity for C2H4. At a low overpotential of -1.2 V, the 15% CeO2/CuO catalyst demonstrated a current density of 14.2 mA cm⁻² and achieved a Faradaic efficiency for ethylene as high as 65.78%, which is 2.85 times the current density (j = 4.98 mA cm⁻²) and 3.27 times the Faradaic efficiency for ethylene (FEC2H4 = 20.13%) of the undoped catalyst at the same potential. This work provides a feasible basis for achieving efficient CO2RR to C2 products, and even multi-carbon products.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Chemphyschem : a European journal of chemical physics and physical chemistry
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.