Abstract

Polyester is widely used in biomedical, textile, and food packaging fields. Therefore, enhancing it with antimicrobial properties would be a significant advancement. In this paper, a series of borneol-triazine polyesters (BTPs) with different structures are synthesized through room temperature polycondensation. The structure and composition of BTPs are systematically characterized by 1H NMR, FTIR and GPC. Antimicrobial results reveal that the ability of BTPs to resist bacterial or fungal adhesion is directly related to the polymer structure. When the polymer chain of BTPs adopts a rigid structure, they exhibit excellent anti-adhesive and inhibitory performances against both Gram-negative bacteria (Escherichia coli) and Gram-positive bacteria (Staphylococcus aureus). Meanwhile, the as-synthesized BTPs poses a fungal-repelling effect on common fungal strains (Aspergillus niger) for up to 30 d. Further studies have shown that a stereochemical structure brought by borneol is key for imparting effective antimicrobial properties to BTPs. In addition, BTPs are non-leaching materials with low cellular cytotoxicity. Taking into consideration, BTP provides a potential strategy for preparing a new class of antimicrobial polyester materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.