Abstract

A scalable method for the assembly of oriented bacterial cellulose (BC) films is presented based on using wrinkled thin silicone substrates of meter-square size as templates during biotechnological syntheses of BC. Control samples, including flat templated and template-free bacterial cellulose, along with the oriented BC, are morphologically characterized using scanning electron microscopy (SEM). Multiple functional properties including wettability, birefringence, mechanical strength, crystallinity, water retention, thermal stability, etc., are being characterized for the BC samples, where the wrinkling-induced in situ BC alignment not only significantly improved material mechanical properties (both strength and toughness) but also endowed unique material surface characteristics such as wettability, crystallinity, and thermal stability. Owing to the enhanced properties observed, potential applications of wrinkle templated BC in printing and cell culture are being demonstrated as a proof of concept, which renders their approach promising for various biomedical and packaging applications.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.