Abstract

This paper extends the in situ adaptive tabulation (ISAT) algorithm for accelerating the simulation of complex heterogeneous chemical kinetics within transient, three-dimensional, computational fluid dynamics (CFD). The ISAT algorithm, initially developed for homogeneous combustion kinetics, takes advantage of the fact that initial conditions for the chemistry in a particular cell (i.e., temperature and composition) may have been present in this cell or another cell earlier in the simulation. In such cases, the solution can be extracted from a tabulation of prior solutions more efficiently than solving the local kinetics problem. The ISAT algorithm uses efficient tabulation and retrieval algorithms, greatly accelerating the solution process. Illustrative results are based on the simulation of methane reforming in a catalytic microchannel reactor, considering coupled fluid mechanics, catalytic chemistry, and conjugate heat transfer.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.