Abstract

Host antidonor effector T cells represent a major barrier to the successful engraftment of allogeneic donor hematopoietic progenitor and stem cells. Here, administration of a complex of IL-2 and anti-IL 2 antibodies (IAC) significantly enhanced donor chimerism early as well as long-term engraftment following reduced-intensity conditioning (RIC) and allogeneic major histocompatibility complex (MHC)-matched hematopoietic cell transplantion (HCT). Timing of administration of this complex was crucial: administration of IAC post-HCT more efficiently facilitated marrow engraftment than pre-HCT treatment. Donor chimerism persisted to >6 months post-HCT. Importantly, this approach clearly suppressed the emergence of host antidonor CD8 T cells 2 to 3 weeks post-HCT as assessed by tetramer staining. Following in vivo reactivation of IAC-treated and control recipients at >5 months post-HCT with donor antigen, only PBS-treated control marrow allograft recipients responded with tetramer-binding CD8 cells. In total, the present findings support the notion that the transient activation and expansion of host Tregs in situ post-HCT can be explored as a new approach to regulate host alloreactivity posttransplant. Interestingly, direct stimulation of recipient Treg cells in RIC recipients obviated a requirement for exogenous Treg cell transfusion in this model and may represent a viable alternative to, and/or complement the adaptive transfer of Treg populations in clinical HCT.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.