Abstract

The antioxidant active Mannich base 1-[anilino (phenyl) methyl] pyrrolidine-2,5-dione (APMPD) have been synthesized and its FT-IR and FT-Raman vibrational spectra were recorded within the region of 4000cm−1, 50cm−1 respectively. The molecular geometric parameters of APMPD have been computed using HF and DFT model theories. The energies of APMPD are calculated for all the eight possible conformers using B3LYP method at 6-311++G(d,p) basis set. From the computational results, the M1 conformer was identified as the most stable conformer of APMPD. The stable conformer was compared with experimental crystal geometry, which again fortifies the results of conformer analysis. The fundamental vibrations of the molecule are assigned according to the characteristic region and the literature report. The predicted highest occupied molecular orbital (HOMO) and lowest unoccupied molecular orbital (LUMO) energy gap provide vivid idea on charge transfer behavior of APMPD. The molecular electrostatic potential (MEP) and Mulliken charge analysis indicate the feasible electrophilic and nucleophilic reactive sites on APMPD. The thermodynamic properties (heat capacity, entropy, and enthalpy) of the title compound at various temperatures are calculated in gas phase.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.