Abstract

Interaction of the minor groove binder, Hoechst 33258, with the Dickerson-Drew DNA dodecamer sequence has been investigated using docking, MM/QM, MM/GBSA and molecular dynamics computations to study the modes of binding and the interactions responsible for the binding. Besides the original Hoechst 33258 ligand (HT), a total of 12 ionization and stereochemical states for the ligand are obtained at the physiological pH and have been docked into B-DNA. These states have one or the other or both benzimidazole rings in protonated states, apart from the piperazine nitrogen, which has a quaternary nitrogen in all the states. Most of these states are found to exhibit good docking scores and free energy of binding with B-DNA. The best docked state has been taken further for molecular dynamics simulations and compared with the original HT. This state is protonated at both benzimidazole rings besides the piperazine ring and hence has very highly negative coulombic interaction energy. In both cases, there are strong coulombic interactions, but these are offset by the almost equally unfavorable solvation energies. Thus, the nonpolar forces, particularly van der Waals contacts, dominate the interaction, and the polar interactions highlight subtle changes in the binding energies, leading to more highly protonated states having more negative binding energies. Communicated by Ramaswamy H. Sarma

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.