Abstract

This study was planned to in silico screening of ssDNA aptamer against Escherichia coli O157:H7 by combination of machine learning and the PseKNC approach. For this, firstly a total numbers of 47 validated ssDNA aptamers as well as 498 random DNA sequences were considered as positive and negative training data respectively. The sequences then converted to numerical vectors using PseKNC method through Pse-in-one 2.0 web server. After that, the numerical vectors were subjected to classification by the SVM, ANN and RF algorithms available in Orange 3.2.0 software. The performances of the tested models were evaluated using cross-validation, random sampling and ROC curve analyzes. The primary results demonstrated that the ANN and RF algorithms have appropriate performances for the data classification. To improve the performances of mentioned classifiers the positive training data was triplicated and re-training process was also performed. The results confirmed that data size improvement had significant effect on the accuracy of data classification especially about RF model. Subsequently, the RF algorithm with accuracy of 98% was selected for aptamer screening. The thermodynamics details of folding process as well as secondary structures of the screened aptamers were also considered as final evaluations. The results confirmed that the selected aptamers by the proposed method had appropriate structure properties and there is no thermodynamics limit for the aptamers folding.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.