Abstract

Cryptosporidium parvum is a protozoan parasite which causes waterborne diseases known as Cryptosporidiosis. It is an acute enteric diarrheal disease being severe in the case of immunocompromised individuals and children. C. parvum mainly depends on the glycolysis process for energy production and LDH (Lactate Dehydrogenase) is a key controller of this process. In this study from different in-silico approaches such as structure-based, ligand-based and de novo drug design; a total of 40 compounds were selected for docking studies against LDH. The study reported a compound CHEMBL1784973 from Pathogen Box as the best inhibitor in terms of docking score and pharmacophoric features. Furthermore, the binding mode of the best-reported inhibitor was validated through molecular dynamics simulation for a time interval of 70 ns in water environment. The findings resulted in the stable conformation of the inhibitor in the active site of the protein. This study will be helpful for experimental validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.