Abstract

Since the outbreak of severe acute respiratory syndrome corona Virus -2 (SARS-CoV-2) has happened in December 2019 in Wuhan, China, the cases of novel coronavirus disease (COVID-19) is rapidly increasing worldwide. In the absence of specific drugs against COVID-19, the fast and reliable choice would be repurposing of existing drugs. Here, we have chosen one of the crucial enzymes of the SARS-CoV-2, Papain like protease (PLpro) and its mutant C111S for the structure-based in-silico screening of the FDA approved drugs. Firstly, the alignment of the wild type and mutant PLpro was done, and no significant change in the global structure was observed. Then based on the docking study, we have reported the best 3 compounds against a mutant and wild type PLpro. These lead compounds include amikacin and mafenide, which are well-known antibiotics. The binding affinity, as well as number of polar and non-polar interactions, indicates their potential against the PLpro. This computational study strongly suggests the experimental validations of the predicted compounds for a confident claim.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.