Asian Journal of Pharmaceutical and Clinical Research
Read

IN SILICO PREDICTION OF POTENTIAL INHIBITORS FOR THE M2 PROTEIN OF INFLUENZA A VIRUS USING MOLECULAR DOCKING STUDIES

Publication Date Aug 7, 2022

Abstract

Objective: In this study, the M2 protein of influenza A virus was selected as a target for various phytochemical compounds and an attempt was made to determine their inhibitory activity against the target protein using computational biology. Thus, seeking novel therapeutic strategies against the influenza A virus. Methods: With the aid of the computational approach in biology, using in-silico techniques, the evaluation of drug-likeness, molecular properties, and bioactivity of the identified eight phytocompounds (Pseudo beta colubrine, Withaferin, Shinjulactone D, 5-Dehydrouzarigenin, Cinchonidine, Corylidin, Amarolide, and Deoxyartemisinin) was carried out using Swiss absorption, distribution, metabolism, and excretion, while Protox-II server was used to identify its toxicity. The in silico molecular docking of the phytochemical ligands with the M2 protein motif was carried out using AutoDock (Vina), which evaluated the binding affinity for further selection of the most compatible and pharmacologically significant ligand. All the potent ligands could be considered as lead molecules based on their pharmacokinetic and drug likeness properties. Results: Results suggested that Shinjulactone D, Cinchonidine, and Deoxyartemisinin ligands with the best binding pose could be selected as promising candidate, showing high potency for drug development. Conclusion: This study concludes the relevance of selected phytochemical compounds as prospective leads for the treatment of influenza A virus.

Concepts

M2 Protein Of Influenza M2 Protein Evaluation Of Drug-likeness Protein Of Influenza In-silico Techniques Drug Likeness Properties Binding Pose Phytochemical Compounds Approach In Biology Protein Motif

Round-ups are the summaries of handpicked papers around trending topics published every week. These would enable you to scan through a collection of papers and decide if the paper is relevant to you before actually investing time into reading it.

Climate change Research Articles published between Sep 12, 2022 to Sep 18, 2022

R DiscoverySep 19, 2022
R DiscoveryArticles Included:  5

Rainfall projections from the Coupled Model Intercomparison Project (CMIP) models are strongly tied to projected sea surface temperature (SST) spatial...

Read More

Coronavirus Pandemic

You can also read COVID related content on R COVID-19

R ProductsCOVID-19

ONE PROBLEM . ONE PURPOSE . ONE PLACE

Creating the world’s largest AI-driven & human-curated collection of research, news, expert recommendations and educational resources on COVID-19

COVID-19 Dashboard

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on “as is” basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The Copyright Law.