Abstract

BackgroundDrug repositioning refers to the identification of new indications for existing drugs. Drug-based inference methods for drug repositioning apply some unique features of drugs for new indication prediction. Complementary information is provided by these different features. It is therefore necessary to integrate these features for more accurate in silico drug repositioning.ResultsIn this study, we collect 3 different types of drug features (i.e., chemical, genomic and pharmacological spaces) from public databases. Similarities between drugs are separately calculated based on each of the features. We further develop a fusion method to combine the 3 similarity measurements. We test the inference abilities of the 4 similarity datasets in drug repositioning under the guilt-by-association principle. Leave-one-out cross-validations show the integrated similarity measurement IntegratedSim receives the best prediction performance, with the highest AUC value of 0.8451 and the highest AUPR value of 0.2201. Case studies demonstrate IntegratedSim produces the largest numbers of confirmed predictions in most cases. Moreover, we compare our integration method with 3 other similarity-fusion methods using the datasets in our study. Cross-validation results suggest our method improves the prediction accuracy in terms of AUC and AUPR values.ConclusionsOur study suggests that the 3 drug features used in our manuscript are valuable information for drug repositioning. The comparative results indicate that integration of the 3 drug features would improve drug-disease association prediction. Our study provides a strategy for the fusion of different drug features for in silico drug repositioning.

Highlights

  • Drug repositioning refers to the identification of new indications for existing drugs

  • Area under ROC curve (AUC) values and area under precision-recall curve (AUPR) values are computed for performance comparison

  • In this paper, we comprehensively study the effects of 3 drug features from chemical, genomic and pharmacological spaces on drug repositioning

Read more

Summary

Introduction

Drug repositioning refers to the identification of new indications for existing drugs. Drug repositioning [3], which aims to find new indications for approved or investigational drugs, has emerged as an important alternative to the traditional drug discovery. As it uses de-risked drug compounds, drug repositioning has the potential to reduce development time and increase success ratio compared to developing an entirely new drug for disease treatment [4]. A well-known instance is sildenafil, which has been repurposed from an antihypertensive drug to the treatment of erectile dysfunction Existing antivirals, such as baloxavir, azvudine and darunavir, are repurposed to fight the current COVID-19 pandemic [5]

Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.