Abstract

Hepatocellular carcinoma (HCC) is a fatal disease, accounting for 75-85% of primary liver cancers. The conclusive research on miR-181c-5p's role in hepatocarcinogenesis, whether it has oncogenic effects or acts as a tumor repressor, is limited and fluctuating. Therefore, the current study aimed to elucidate the role of miR-181c-5p in HCC in silico and in vivo. The bioinformatics analysis of miR-181c-5p expression data in HCC using several databases strongly shed light on its involvement in HCC development, but also confirmed the fluctuating data around its role. miR-181c-5p was proven here to have an oncogenic role by increasing HepG2 cells' viability as confirmed by MTT analysis. In addition, miR-181c-5p was upregulated in the HCC positive control group and progressed the HCC development and malignant features by its forced expression in an HCC mouse model by targeted delivery using a LA-PAMAM polyplex. This is indicated by the cancerous gross and histological features, and the significant increase in liver function biomarkers. The functional enrichment bioinformatics analyses of miR-181c-5p-downregulated targets in HCC indicated that miR-181c-5p targets were significantly enriched in multiple pathways and biological processes involved in HCC development. Fbxl3, an example for miR-181c-5p potential targets, downregulation and its correlation with miR-181c-5p were validated by qPCR. In conclusion, miR-181c-5p is upregulated in HCC and has an oncogenic role enhancing HCC progression.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.