Erythrophagocytosis occurring in the spleen is a critical process for removing senescent and diseased red blood cells (RBCs) from the microcirculation. Although some progress has been made in understanding how the biological signaling pathways mediate the phagocytic processes, the role of the biophysical interaction between RBCs and macrophages, particularly under pathological conditions such as sickle cell disease (SCD), has not been adequately studied. Here, we combine computational simulations with microfluidic experiments to quantify RBC-macrophage adhesion dynamics under flow conditions comparable to those in the red pulp of the spleen. We also investigate the RBC-macrophage interaction under normoxic and hypoxic conditions. First, we calibrate key model parameters in the adhesion model using microfluidic experiments for normal and sickle RBCs under normoxia and hypoxia. We then study the adhesion dynamics between the RBC and the macrophage. Our simulation illustrates three typical adhesion states, each characterized by a distinct dynamic motion of the RBCs, namely firm adhesion, flipping adhesion, and no adhesion (either due to no contact with macrophages or detachment from the macrophages). We also track the number of bonds formed when RBCs and macrophages are in contact, as well as the contact area between the two interacting cells, providing mechanistic explanations for the three adhesion states observed in the simulations and microfluidic experiments. Furthermore, we quantify, for the first time to our knowledge, the adhesive forces between RBCs (normal and sickle) and macrophages under different oxygenated conditions. Our results show that the adhesive forces between normal cells and macrophages under normoxia are in the range of 33 pN - 58 pN, 53 pN - 92 pN for sickle cells under normoxia and 155 pN - 170 pN for sickle cells under hypoxia. Taken together, our microfluidic and simulation results improve our understanding of the biophysical interaction between RBCs and macrophages in SCD and provide a solid foundation for investigating the filtration function of the splenic macrophages under physiological and pathological conditions.

Full Text

Published Version
Open DOI Link

Get access to 115M+ research papers

Discover from 40M+ Open access, 2M+ Pre-prints, 9.5M Topics and 32K+ Journals.

Sign Up Now! It's FREE

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call