Abstract

This study was conducted to identify the volatile compounds of Mentha × smithiana essential oil (MSEO) and evaluate its antioxidant and antibacterial potential. The essential oil (EO) content was assessed by gas chromatography–mass spectrometry (GC-MS). Carvone (55.71%), limonene (18.83%), trans-carveol (3.54%), cis-carveol (2.72%), beta-bourbonene (1.94%), and caryophyllene oxide (1.59%) were the main identified compounds. The MSEO displayed broad-spectrum antibacterial effects and was also found to be the most effective antifungal agent against Candida albicans and Candida parapsilosis. The antioxidant activity of MSEO was tested against cold-pressed sunflower oil by peroxide, thiobarbituric acid, 1,1-diphenyl-2-picrylhydrazyl radical (DPPH), and β-carotene/linoleic acid bleaching methods. The EO showed strong antioxidant effects as reflected by IC50 values of 0.83 ± 0.01 mg/mL and relative antioxidative activity of 87.32 ± 0.03% in DPPH and β-carotene/linoleic acid bleaching assays, respectively. Moreover, in the first 8 days of the incubation period, the inhibition of primary and secondary oxidation compounds induced by the MSEO (0.3 mg/mL) was significantly stronger (p < 0.05) than that of butylated hydroxyanisole. In silico molecular docking studies were conducted to highlight the underlying antimicrobial mechanism as well as the in vitro antioxidant potential. Recorded data showed that the antimicrobial activity of MSEO compounds could be exerted through the D-Alanine-d-alanine ligase (DDl) inhibition and may be attributed to a cumulative effect. The most active compounds are minor components of the MSEO. Docking results also revealed that several mint EO components could exert their in vitro antioxidant activity by employing xanthine oxidase inhibition. Consequently, MSEO could be a new natural source of antioxidants and antiseptics, with potential applications in the food and pharmaceutical industries as an alternative to the utilization of synthetic additives.

Highlights

  • The consumption of minimally processed and additive-free foods has increased in recent decades, demanding the replacement of the traditional preservation methods by the food industry [1]

  • The results revealed that C. albicans and C. parapsilosis were the most susceptible tested strains to the Mentha × smithiana essential oil (MSEO) action, followed by S. pyogenes > S. aureus > E. coli > P. aeruginosa >

  • Regarding the set of target protein structures involved in antimicrobial activity, the Regarding the set of target protein structures involved in antimicrobial activity, the results indicate an increased affinity of most docked structures towards the D-Alanineresults indicate an increased affinity of most docked structures towards the D-Alanine-dd-alanine ligase (DDI) (2ZDQ)

Read more

Summary

Introduction

The consumption of minimally processed and additive-free foods has increased in recent decades, demanding the replacement of the traditional preservation methods by the food industry [1]. EOs are aromatic, volatile, and complex liquids extracted from different plant parts (flowers, leaves, seeds, fruits, bark, roots) [3] These are secondary metabolites mainly involved in plants’ defensive mechanisms and usually contain monoterpenes, sesquiterpene, and phenolic compounds, as well as oxygenated or non-oxygenated derivatives [4]. Aside from their multiple applications in the cosmetic, pharmaceutical, and food industry, these are recognized for their biological properties (antimicrobial, antioxidant, carminative, antiviral, anti-inflammation, analgesic, antispasmodic, etc.) [5,6,7,8].

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.