Abstract

In silico genome-scale cell models are promising tools for accelerating the design of cells with improved and desired properties. We demonstrated this by using a genome-scale reconstructed metabolic network of Saccharomyces cerevisiae to score a number of strategies for metabolic engineering of the redox metabolism that will lead to decreased glycerol and increased ethanol yields on glucose under anaerobic conditions. The best-scored strategies were predicted to completely eliminate formation of glycerol and increase ethanol yield with 10%. We successfully pursued one of the best strategies by expressing a non-phosphorylating, NADP +-dependent glyceraldehyde-3-phosphate dehydrogenase in S. cerevisiae. The resulting strain had a 40% lower glycerol yield on glucose while the ethanol yield increased with 3% without affecting the maximum specific growth rate. Similarly, expression of GAPN in a strain harbouring xylose reductase and xylitol dehydrogenase led to an improvement in ethanol yield by up to 25% on xylose/glucose mixtures.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.