Abstract

A point E inside a triangle ABC can be coordinatized by the areas of the triangles EBC, ECA, and EAB. These are called the barycentric coordinates of E. It can also be coordinatized using the six segments into which the cevians through E divide the sides of ABC, or the six angles into which the cevians through E divide the angles of ABC, or the six triangles into which the cevians through E divide ABC, etc. This article introduces several coordinate systems of these types, and investigates those centres of ABC whose coordinates, relative to a given coordinate system, are linear (or quasi-linear) with respect to appropriate elements of ABC, such as its side-lengths, its angles, etc. This results in grouping known centres into new families, and in discovering new centres. It also leads to unifying several results that are scattered in the literature, and creates several open questions that may be suitable for classroom discussions and team projects in which algebra and geometry packages are expected to be useful. These questions may also be used for Mathematical Olympiad training and may serve as supplementary material for students taking a course in Euclidean geometry.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.