Abstract

Fed-batch culture currently represents the most attractive choice for large scale production for monoclonal antibodies (MAbs), due to its operational simplicity, reliability, and flexibility for implementation in multipurpose facilities. Development of highly productive cell lines, maximization of cell culture longevity, and maintenance of high specific antibody secretion rates through genetic engineering techniques, nutrition supplementation, waste product minimization, and control of environmental conditions are important for the design of high-yield fed-batch processes. Initially simple supplementation protocols have evolved into sophisticated serum-free multi-nutrient feeds that result in MAb titers on the order of 1-2 g/L. Limited research has been published to date on the effect of various culture parameters on potentially important quality issues, such as MAb glycosylation and stability. Although most fed-batch protocols to date have relied on relatively simple control schemes, increasingly sophisticated algorithms must be applied in order to take full advantage of the potentially additive effects of manipulating nutrient and environmental parameters to maximize fed-batch process productivity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.