Abstract

We report on the optical photomodulation properties of all-polymer planar microcavities in which the photochromic poly((4-pentyloxy-3’-methyl-4’-(6-methacryloxyhexyloxy))azobenzene) (PMA4) acts as photoresponsive cavity layer. We induce the trans-cis isomerization process of the azobenzene group by polarized 405 nm CW-laser irradiation, while the backward process is driven by unpolarized CW-laser irradiation at 442 nm. The all-optical photoisomerization process induces a remarkable in-plane anisotropic spectral shift of the cavity modes for the first and second order photonic band gaps. The spectral and intensity modulation effects for these flexible all-polymer microcavities are discussed with respect to those so far reported in literature for analogous systems.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.