Abstract

The participation of the electronic subsystem of graphene nanoparticles in heat transfer on the interfaphase surface with epoxy polymer, its participation in the thermodestruction processes of epoxy matrix and the concentration interval of the subsystem's influence on the thermal destruction of the polymer matrix are investigated. For such purpose, epoxy resin composites with oxidized and non-oxidized graphene nanoparticles have been used.The particles were obtained by electrochemical method and those are characterized by the same dispersion and analogical of defect spectra. The particles have the same crystal structure, however in composites with oxidized graphene, the participation of the electronic subsystem in thermophysical processes on the interfacial surface is blocked by the atomic layer of adsorbed oxygen. Сomposites of epoxy resin filled with the same particles of nonoxidized and oxidized nanoparticles in the filler content 0.0, 1.0, 2.0, and 5.0 wt%. The multilayered graphene particles were studied by X-ray diffraction analysis (XRD) and Raman spectroscopy (RS) methods. It was shown that the graphene particles are the 2D dimensional structures with about of 100 layers. Desorption curves of epoxy and its composites have been obtained using a programmable thermal desorption mass-spectroscopic (TDMS) technique for fragments with 15≤ m/z ≤108 and temperature interval 35 - 800 оС. The activation energy of desorption was determined from the Wigner-Polanyi equation as 35 - 150 kJ/mol, temperature and mass dependences of the quantity of desorbed atomic fragments have been calculated. It were established the graphene electron subsystem takes part in polymer structure thermodestruction for epoxy composites with nonoxidized graphene enhancing their heat resistance at graphene content С ≤ 1 wt%. With increasing filler content, the thermodestruction behavior in pristine epoxy and its composites with nonoxidized and oxidized graphene is analogical. The thermodestruction characterizes by the stepwise variations in the desorption intensity of atomic fragments. The electron subsystem of graphene particles does not participate in the heat resistance variations.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.