Abstract

The long-term reliability of modern power MOSFETs is assessed through accelerated electro-thermal aging tests. Previous studies have shown that the source metallization (top metal and wires) is a failure-prone location of the component. To study how the top aluminum metallization microstructure ages, we have performed ion and electron microscopy and mapped the grain structure before and after avalanche and short-circuit aging tests. The situation under the bond wires is significantly different as the bonding process induces plastic deformation prior to aging. Ion microscopy seems to show two inverse tendencies: grain growth under the wires and grain refinement elsewhere in the metallization. Transmission electron microscopy shows that the situation is more complex. Rearrangement of the initial defect and grain structure happen below and away from the wire. The most harmful fatigue cracks propagate parallel to the wire/metal bonding interface.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.