Abstract
Molecules capable of thermally activated delayed fluorescence (TADF) are promising as emitters in organic light-emitting devices. Processes leading to and competing with TADF in 4,5-di(9H-carbazol-9-yl)-phthalonitrile are analyzed in detail. It is demonstrated that the key features of an efficient TADF emitter include the presence of two triplet states of different natures with potential energy surfaces crossing between the T1 and S1 minima and a noticeable dependence of the S1 → S0 oscillator strength on molecular deformations from low-frequency antisymmetric vibrational modes. These conclusions can be useful in the targeted design of efficient TADF emitters.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.