Abstract

Phase-sensitive demodulation is widely used in many systems, e.g. impedance measurement, communication, sonar and radar. In most cases, white noise is assumed in system design and analysis. However, impulsive noise is often encountered in many applications, which imposes challenges for a phase-sensitive demodulator (PSD). This paper presents a nonlinear filter for removing impulsive noise prior to the PSD. Unlike its linear counterparts, it is analysed in the time domain rather than in the frequency domain, making it easier to implement. The performance of the proposed method is compared to a standard PSD with a low-pass filter to suppress the impulsive noise and the theoretical limits of the signal-to-noise ratio (SNR) is analysed. The theoretical prediction has been validated by numerical simulation and experiment. Experimental results show that the proposed method can achieve SNR improvement of 10.8 dB or greater when impulse rate α = 0.01. Statistical analysis shows that 97.2% of the impulses can be rejected by the median filter of length 3 when impulse rate is less than or equal to 0.1.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.