Abstract

Interference is an important limitation in many communication systems. It has been shown in many situations that the popular Gaussian approximation is not adequate and interference exhibits an impulsive behavior. This paper surveys the different statistical models proposed for such an interference, that can generally be unified using the class of sub-exponential family of distributions, and its impact on the receiver design. Visualizing the optimal decision boundaries allows one to show the non linear effect induced by impulsive noise models, which explains the significant loss in receiver performance designed under the standard Gaussian approximation. This motivates the need to develop new receivers. We propose a framework to design receivers robust to a variety of interference types, both Gaussian and non-Gaussian. We explore three ways of thinking about such receiver designs: a linear approach; by approximating the noise plus interference distribution; and by mimicking the decision rule distribution directly. Except for the linear approach, the other designs are capable of replicating the non-trivial optimal decision regions to different extents. The new detection algorithms are evaluated via Monte Carlo simulations. We focus on four efficient architectures, including the parameter estimations: Myriad, Normal Inverse Gaussian, p-norm and a direct estimation of the likelihood ratio function. They exhibit good performance, close to the optimal, in a large range of situations demonstrating they may be considered as robust decision rules in the presence of heavy tailed or impulsive interference environments.

Highlights

  • Wireless communication systems are usually designed assuming Gaussian noise

  • 4 We evaluate through simulations the robustness of several receivers when the interference impulsiveness varies or when the noise model is changed in the case of linear, myriad, p-norm, Normal Inverse Gaussian (NIG) and likelihood ratio (LLR)-based receivers

  • Along with a review on receiver design (Sect. 3.4.2), we proposed a classification of receivers;

Read more

Summary

Introduction

Wireless communication systems are usually designed assuming Gaussian noise. This fundamentally impacts many solutions that are used in transmitters and receivers. This is especially the case when it comes to the design of the receiver decision strategy which is typically directly derived from Gaussian assumptions. We aim to give insight in the choices that can be made to model the noise and design an adapted receiver. We want this receiver to be flexible enough in order to exhibit performance

Objectives
Methods
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.