Abstract

In this work, we study the mitigation of stress waves in composite-based woodpile phononic crystals composed of heterogeneous cylindrical rods, whose bending mode exhibits local resonant behavior that strongly interferes with external perturbation. Impulse excitation in this system is transformed into several modulated wave patterns depending on resonant frequencies and their mechanical properties. Thus, these mechanisms have been a candidate for novel methods of shock mitigation without relying on material dissipation. Here, we suggest the mechanical system consisting of the unit cell's composite configuration as an approach for more efficient shock attenuation. To efficiently analyze the nonlinear wave dynamics of the proposed systems, we present an extended discrete element model (DEM) resulting from a combination of an analytic beam theory with the discretization model. We numerically and experimentally demonstrate extreme dispersive waves for shock mitigation by adjusting the weighted composition ratio of the heterogeneous cylinder. Using the verified DEM, we also investigate the strong attenuation performance of incident impulse in disorder-induced systems with different nonlinear strengths. We, thus, expect that these composite-based mechanical systems could be used to design tunable modulation energy transport and efficient impact protector devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.