Abstract

Precipitated aragonite can be synthesized at relatively low temperatures by combining the application of low-frequency sonication with the use of magnesium chloride additive, as demonstrated by our prior study. In the present study, new process conditions were found that promote aragonite formation while accelerating and increasing the reaction yield. It was found that Mg-to-Ca molar ratio of 3:1, together with higher slurry concentration (74 g/L Ca(OH)2) and higher power-to-volume ratio (800 W/L gross, achieved by reducing slurry volume), promoted the aragonite formation while working at a higher CO2 flow rate (2.0 NL/min), and consequently higher precipitated calcium carbonate production rate (1 g/(L · min) CaCO3). The yield was thus improved while conserving the desired product properties as follows: high polymorph purity (95.7 wt%), small and narrow particle size distribution (D[3,2] = 0.74 µm), and unique shape (hubbard squash-like).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.