Abstract
Biomass torrefaction is a thermal pre-treatment technique that improves solid fuel properties in relation to its efficient utilization for energy generation. In this study, the torrefaction performance of sewage sludge, a non-lignocellulose biomass and sugarcane bagasse, a lignocellulose biomass were investigated in an electric muffle furnace. The influence of torrefaction temperature on the physiochemical properties of the produced biomaterial were examined. Characterization of the raw and torrefied biomass material were studied using thermogravimetric analysis, Fourier transform infrared spectroscopy (FTIR) analysis and scanning electron microscopy. From the result obtained, it was evident that an increase in torrefaction temperature up to 350 °C caused a 33.89% and 45.94% decrease in volatile matter content of sewage sludge and sugarcane bagasse, respectively. At a higher temperature of 350 °C, the peak corresponding to OH stretching of hydroxyl group decreased in intensity for both biomasses, showing a decomposition of the hydroxyl group as a result of torrefaction. This enriched the lignin content of the torrefied samples, thus making these solid fuels good feedstock for energy production.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.