Abstract
Many imaging systems produce images with deficient sharpness due to different real limitations. Hence, various image sharpening techniques have been used to improve the acutance of digital images. One of such is the well-known Laplacian sharpening technique. When implementing the basic Laplacian technique for image sharpening, two main drawbacks were detected. First, the amount of introduced sharpness cannot be increased or decreased. Second, in many situations, the resulted image suffers from a noticeable increase in brightness around the sharpened edges. In this article, an improved version of the basic Laplacian technique is proposed, wherein it contains two key modifications of weighting the Laplace operator to control the introduced sharpness and tweaking the second order derivatives to provide adequate brightness for recovered edges. To perform reliable experiments, only real-degraded images were used, and their accuracies were measured using a specialized no-reference image quality assessment metric. From the obtained experimental results, it is evident that the proposed technique outperformed the comparable techniques in terms of recorded accuracy and visual appearance.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.