Abstract
3D TSE imaging is very prone to motion artifacts, especially from uncooperative patients, because of the long scan duration. The need to repeat this time-consuming 3D acquisition in the event of large motion artifacts substantially reduces patient comfort and increases the workload of the scanner. A new sampling strategy enables homogenized collection of k-space data for 3D TSE imaging. It is combined with Frobenius norm-based motion-detection to enable freely stopped acquisition in 3D TSE imaging whenever excessive subject motion is detected. The feasibility and reliability of the proposed method were demonstrated and evaluated in in-vivo experiments. It is shown that the additional overhead related to repeat scanning of the 3D TSE sequence as a result of patient motion can be substantially reduced by using the homogenized k-space sampling strategy with automatic scan completion as determined by Frobenius norm-based motion-detection.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: Magnetic Resonance Materials in Physics, Biology and Medicine
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.