Abstract

This paper deals with preconditioners for solving linear systems arising from interior point methods, using iterative methods. The main focus is the development of a set of results that allows a more efficient computation of the splitting preconditioner. During the interior point methods iterations, the linear system matrix becomes ill conditioned, leading to numerical difficulties to find a solution, even with iterative methods. Therefore, the choice of an effective preconditioner is essential for the success of the approach. The paper proposes a new ordering for a splitting preconditioner, taking advantage of the sparse structure of the original matrix. A formal demonstration shows that performing this new ordering the preconditioned matrix condition number is limited; numerical experiments reinforce the theoretical results. Case studies show that the proposed idea has better sparsity features than the original version of the splitting preconditioner and that it is competitive regarding the computational time.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.