Abstract

Signal transmission and information fusion in wireless sensor networks (WSNs) are conventionally assumed to operate over orthogonal channels, which makes the network bandwidth and throughput inefficient. To remedy this inefficiency and improve the performance of the WSNs, we consider complex field network-coded (CFNC) relay-assisted communications, which operates over nonorthogonal channels and provides both spatial and temporal diversity. We derive the optimal likelihood ratio test-based fusion rule for the considered system. To provide robustness against the multiaccess interference, each sensor in the CFNC-coded system is assigned to a unique predetermined signature. Hence, the signature selection and the relay power allocation become crucial factors affecting the performance of the WSNs. We also develop an analytical method to jointly adjust the sensor signatures and the relay power utilizing the average symbol error rate bound of the network together with some information theoretical results. Finally, we evaluate the detection performance of the proposed scheme and compare it with that of the conventional method. The simulation results suggest that the proposed signature selection and relay power allocation method in the CFNC-coded relay-assisted WSNs considerably improves the network performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.