Abstract

ZrO2 and TiO2 modified lead-free (K0.5Na0.5)NbO3 (KNN) piezoelectric ceramics are prepared by a conventional solid-state reaction. The effect of acceptor doping on structural and functional properties is investigated. A decrease in the Curie temperature and an increase in the dielectric constant values are observed when doping. More interestingly, an increase in the coercive field Ec and remanent polarization Pr is observed. The piezoelectric properties are greatly increased when doping with small concentrations dopants. ZrO2 doped ceramic exhibits good piezoelectric properties with piezoelectric coefficient d33 = 134 pC/N and electromechanical coupling factor kp = 35%. It is verified that nonlinearity is significantly reduced. Thus, the creation of complex defects capable of pinning the domain wall motion is enhanced with doping, probably due to the formation of oxygen vacancies. These results strongly suggest that compositional engineering using low concentrations of acceptor doping is a good means of improving the functional properties of KNN lead-free piezoceramic system.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.