Abstract
Indium phosphide quantum dots typically exhibit broad and poorly defined ensemble optical properties due to a highly pronounced nucleation period that consumes virtually all phosphorus precursors, leading to subsequent growth by Ostwald ripening and poor final size distributions. Previous attempts to reduce the reactivity of the phosphorus precursor, and thereby limit its consumption during the nucleation phase, have not led to appreciably better optical properties due to an unwanted increase in the duration of nucleation. Here we present an alternative approach to reducing initial precursor consumption using a simple modification of the indium precursor, in which the widely used carboxylate ligand is replaced by a phosphine. The change of ligand leaves residual precursor available for size-focusing growth after nucleation, leading to significantly improved spectral features. Band-edge emission peaks are typically 30% narrower than for the standard method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.