Abstract

Thin film tandem solar cells made of amorphous and microcrystalline silicon provide renewable energy at the benefit of low material consumption. As a drawback, these materials do not posses the high carrier mobilities of their crystalline counterpart which limits the feasible material thickness. For maintaining the light absorption as high as possible, photon management is required. Here we show that metallic nanodiscs that sustain localized plasmon polaritons can increase the efficiency of such solar cells if they are incorporated into the dielectric intermediate reflector separating the top and the bottom cell. We provide quantitative estimates for the possible absorption enhancement of optimized bi-periodic nanodiscs that are feasible for fabrication. Emphasis is also put on discussing the impact of obliquely incident sun light on the solar cell performance.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.