Abstract

At Széchenyi István University, an autonomous racing car for the Shell Eco-marathon is being developed. One of the main tasks is to create a neural network which segments the road surface, protective barriers and other components of the racing track. The difficulty with this task is that no suitable dataset for special objects, e.g. protective barriers, exists. Only a dataset limited in terms of its size is available, therefore, computer-generated virtual images from a virtual city environment are used to expand this dataset. In this work, the effect of computer-generated virtual images on the efficiency of different neural network architectures is examined. In the training process, real images and computer-generated virtual images are mixed in several ways. Subsequently, three different neural network architectures for road surfaces and the detection of protective barriers are trained. Past experiences determine how to mix datasets and how they can improve efficiency.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.