Abstract
Recently, based upon the Chen-Harker-Kanzow-Smale smoothing function and the trajectory and the neighbourhood techniques, Hotta and Yoshise proposed a noninterior point algorithm for solving the nonlinear complementarity problem. Their algorithm is globally convergent under a relatively mild condition. In this paper, we modify their algorithm and combine it with the superlinear convergence theory for nonlinear equations. We provide a globally linearly convergent result for a slightly updated version of the Hotta-Yoshise algorithm and show that a further modified Hotta-Yoshise algorithm is globally and superlinearly convergent, with a convergence Q-order 1 + t, under suitable conditions, where t ∈ (0, 1) is an additional parameter.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.