Abstract
A new four-dimensional, hyperchaotic dynamic system, based on Lorenz dynamics, is presented. Besides, the most representative dynamics which may be found in this new system are located in the phase space and are analyzed here. The new system is especially designed to improve the complexity of Lorenz dynamics, which, despite being a paradigm to understand the chaotic dissipative flows, is a very simple example and shows great vulnerability when used in secure communications. Here, we demonstrate the vulnerability of the Lorenz system in a general way. The proposed 4D system increases the complexity of the Lorenz dynamics. The trajectories of the novel system include structures going from chaos to hyperchaos and chaotic-transient solutions. The symmetry and the stability of the proposed system are also studied. First return maps, Poincaré sections, and bifurcation diagrams allow characterizing the global system behavior and locating some coexisting structures. Numerical results about the first return maps, Poincaré cross sections, Lyapunov spectrum, and Kaplan-Yorke dimension demonstrate the complexity of the proposed equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.