Abstract

Magnetic resonance imaging (MRI) is a technique that is widely used in practice to evaluate any pathologies in the human body. One of the areas of interest is the human brain. Naturally, MR images are low-resolution and contain noise due to signal interference, the patient's body's radio-frequency emissions and smaller Tesla coil counts in the machinery. There is a need to solve this problem, as MR tomographs that have the capability of capturing high-resolution images are extremely expensive and the length of the procedure to capture such images increases by the order of magnitude. Vision transformers have lately shown state-of-the-art results in super-resolution tasks; therefore, we decided to evaluate whether we can employ them for structural MRI super-resolution tasks. A literature review showed that similar methods do not focus on perceptual image quality because upscaled images are often blurry and are subjectively of poor quality. Knowing this, we propose a methodology called HR-MRI-GAN, which is a hybrid transformer generative adversarial network capable of increasing resolution and removing noise from 2D T1w MRI slice images. Experiments show that our method quantitatively outperforms other SOTA methods in terms of perceptual image quality and is capable of subjectively generalizing to unseen data. During the experiments, we additionally identified that the visual saliency-induced index metric is not applicable to MRI perceptual quality assessment and that general-purpose denoising networks are effective when removing noise from MR images.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.