Abstract

Solid freeform fabrication (SFF) methods for metal part building, such as three-dimensional laser cladding, are generally less stable and less repeatable than other rapid prototyping methods. A large number of parameters govern the three-dimensional laser cladding process. These parameters are sensitive to the environmental variations, and they also influence each other. This paper introduces the research work in Research Center for Advanced Manufacturing (RCAM) to improve the performance of its developed three-dimensional laser cladding process: laser-based additive manufacturing (LBAM). Metal powder delivery real-time sensing is studied to achieve a further controllable powder delivery that is the key technology to build a composite material or alloy with a functionally gradient distribution. An opto-electronic sensor is designed to sense the powder delivery rate in real time. The experimental results show that the sensor's output voltage has a good linear relationship with the powder delivery rate. A closed-loop control system is also built for heat input control in the LBAM process, based on infrared image sensing. A camera with a high frame rate (up to 800frame/s) is installed coaxially to the top of the laser—nozzle set-up. A full view of the infrared images of the molten pool can be acquired with a short nozzle—substrate distance in different scanning directions, eliminating the image noise from the metal powder. The closed-loop control results show a great improvement in the geometrical accuracy of the built feature.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.