Abstract

A system for solar energy conversion using the up-conversion of sub-band-gap photons to increase the maximum efficiency of a single-junction conventional, bifacial solar cell is discussed. An up-converter is located behind a solar cell and absorbs transmitted sub-band-gap photons via sequential ground state absorption/excited state absorption processes in a three-level system. This generates an excited state in the up-converter from which photons are emitted which are subsequently absorbed in the solar cell and generate electron-hole pairs. The solar energy conversion efficiency of this system in the radiative limit is calculated for different cell geometries and different illumination conditions using a detailed balance model. It is shown that in contrast to an impurity photovoltaic solar cell the conditions of photon selectivity and of complete absorption of high-energy photons can be met simultaneously in this system by restricting the widths of the bands in the up-converter. The upper limit of the energy conversion efficiency of the system is found to be 63.2% for concentrated sunlight and 47.6% for nonconcentrated sunlight.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.