Abstract
Detecting shallow buried antipersonnel mines (APMs) with a ground-penetrating radar (GPR) is a challenging task because of clutter contamination, which often obscures the APM response. In this letter, a novel method combining migration imaging with the low-rank and sparse representation method to suppress clutter and extract target image is presented. The proposed method first focuses and strengthens the target response with migration imaging. Then, since the focused target response and clutter, respectively, constitute the sparse component and the low-rank component of the recorded data, the recently proposed robust principal component analysis (RPCA) can be applied to the recorded data to separate the target response (sparse component) from the clutter (low-rank component). Numerical simulation and experiments with real GPR systems are conducted. Results demonstrate the effectiveness of the proposed method in improving signal-to-clutter ratio and retrieving geometrical information of the target, which permits a better APM identification in heavy clutter environment.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.