Abstract
In handwriting recognition, the design of relevant features is very important, but it is a daunting task. Deep neural networks are able to extract pertinent features automatically from the input image. This drops the dependency on handcrafted features, which is typically a trial and error process. In this paper, we perform an exhaustive experimental evaluation of learned against handcrafted features for Arabic handwriting recognition task. Moreover, we focus on the optimization of the competing full-word based language models by incorporating different characters and sub-words models. We extensively investigate the use of different sub-word-based language models, mainly characters, pseudo-words, morphemes and hybrid units in order to enhance the full-word handwriting recognition system for Arabic script. The proposed method allows the recognition of any out of vocabulary word as an arbitrary sequence of sub-word units. The KHATT database has been used as a benchmark for the Arabic handwriting recognition. We show that combining multiple language models enhances considerably the recognition performance for a morphologically rich language like Arabic. We achieve the state-of-the-art performance on the KHATT dataset.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Pattern Recognition and Artificial Intelligence
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.