Abstract

Microwave absorbing materials are usually designed to solve protection against electromagnetic interference in wireless communication systems and high frequency circuit mechanisms. In this research polystyrene (PS) nanocomposites containing various nano-fillers were successfully synthesized. The novelty of this work is comparing of three various nanostructures: non-metallic conductive graphene oxide, magnetic Fe3O4 and semi-conductor zinc oxide were used as additive. The effect of different fillers loading and homogenizer speed on the reflection loss (RL) amount and electromagnetic wave absorption was investigated. In order to investigate particle size and morphology of the nanostructures the scanning electron microscopy (SEM) was used. The frequency range of 5-8 GHz was employed in the investigation of electromagnetic wave absorption properties of nanocomposites using a vector network analyzer and eventually their absorption properties were analyzed and compared. The results indicate that graphene oxide has substantial effect on absorption in compare with the other nanocomposite samples. Increase of homogenizer speed led to a dispersion improvement of nanostructures and absorption. Therefore, the broadening of the microwave absorption band-width is attributed to the suitable dispersion of nanostructures in polymeric matrix.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.